Data Informativity for the Identification of particular Parallel Hammerstein Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric identification of parallel Wiener-Hammerstein systems

Block-oriented nonlinear models are popular in nonlinear modeling because of their advantages to be quite simple to understand and easy to use. To increase the flexibility of single branch block-oriented models, such as Hammerstein, Wiener, and WienerHammerstein models, parallel block-oriented models can be considered. This paper presents a method to identify parallel Wiener-Hammerstein systems...

متن کامل

Recursive Identification of Hammerstein Systems

A novel recursive algorithm for identification of Hammerstein structures is developed. The linear and nonlinear parameters are separated and estimated recursively in a parallel manner, but each updating algorithm employs the estimation produced by the other at the previous time instant. Hence, it is termed the Alternately Recursive Least Square (ARLS) algorithm.When compared with Recursive Leas...

متن کامل

On the identification of Hammerstein–Wiener systems

Special classes of nonlinear systems applied in engineering are nonlinear systems with both block-oriented Hammerstein and Wiener structures, respectively [1, 3, 4, 7, 8, 14]. There are a lot of papers devoted to the different aspects of the parametric identification of Hammerstein and Wiener systems and much less on that of the Hammerstein–Wiener (H-W) systems with so-called hard nonlinearitie...

متن کامل

Generalized Kernel Regression Estimate for the Identification of Hammerstein Systems

A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.1308